1. Tentukan banyaknya bilangan n ∈ {1, 2, 3, ⋅⋅⋅, 2009} sedemikian sehingga 4n6 + n3 + 5 habis dibagi 7.
2. Misalkan untuk setiap bilangan real x didefinisikan ⎣x⎦ sebagai bilangan bulat terbesar yang lebih kecil atau sama dengan x. Diberikan a1, a2, a3, ⋅⋅⋅ suatu barisan bilangan asli yang memenuhi a1+1/a2=a2+1/a3=a3+1/a4=... . Buktikan bahwa an+1/a(n+1)<1 untuk setiap bilangan asli n.
3. Pada segitiga ABC, titik-titik D, E dan F berturut-turut terletak pada segmen BC, CA dan AB. Nyatakan P sebagai titik perpotongan AD dan EF. Tunjukkan bahwa AD/AFxDC + AC/AExDB + AD/APxBC
4. Di suatu pulau terdapat 7 kota dan ada jaringan kereta api yang melalui kota-kota tersebut. Setiap segmen rel menghubungkan tepat 2 kota, dan diketahui bahwa setiap kota memiliki paling sedikit 3 segmen ke kota lain. Buktikan bahwa terdapat rute perjalanan kereta api yang mengunjungi 4 kota yang berbeda masing-masing sekali dan kembali ke kota asalnya. (Contoh : rute A − B − C − D − A)
5. Di dalam suatu laci terdapat paling banyak 2009 bola yang terdiri dari bola putih dan biru yang tercampur secara acak. Jika dua bola diambil secara acak tanpa pengembalian, maka diketahui probabilitas bahwa terambil keduanya bola warna putih atau keduanya bola warna biru adalah 21 . Berapa banyak maksimum bola putih yang mungkin berada dalam laci sedemikian sehingga pernyataan tentang probabilitas tersebut tetap terpenuhi ?
6. 6. Tentukan nilai terkecil yang mungkin dari fungsi f(x) = x2008 − 2 x2007 + 3 x2006 − 4 x2005 + 5 x2004 + ⋅⋅⋅ − 2006 x3 + 2007 x2 − 2008x + 2009 untuk sebarang bilangan real x.
7. Suatu pasangan bilangan bulat (m, n) dikatakan baik bila m⏐n2 + n dan n⏐m2 + m Diberikan sebarang dua bilangan asli a, b > 1 yang relatif prima, buktikan bahwa terdapat pasangan baik (m, n) dengan a⏐m dan b⏐n tetapi a tidak membagi n dan b tidak membagi m.
8. Diberikan segitiga ABC lancip. Lingkaran dalam segitiga ABC menyinggung BC, CA, dan AB berturut-turut di D, E, dan F. Garis bagi sudut A memotong DE dan DF berturut-turut di K dan L. Misalkan AA1 adalah garis tinggi dan M titik tengah BC. (a) Buktikan bahwa BK dan CL tegak lurus garis bagi sudut BAC (b) Tunjukkan bahwa A1KML adalah segiempat talibusur
0 komentar:
Post a Comment